The role of cysteines in polyketide synthases. Site-directed mutagenesis of resveratrol and chalcone synthases, two key enzymes in different plant-specific pathways.

نویسندگان

  • T Lanz
  • S Tropf
  • F J Marner
  • J Schröder
  • G Schröder
چکیده

Resveratrol and chalcone synthases are related plant-specific polyketide synthases that are key enzymes in the biosynthesis of stilbenes and flavonoids, respectively. The stepwise condensing reactions correspond to those in other polyketide and fatty-acid synthases. This predicts that the two proteins also contain cysteines that are essential for enzyme activity because they bind the substrates. We exchanged, in both enzymes, all of the 6 conserved cysteines into alanine by site-directed mutagenesis and tested the mutants after expression of the proteins in the Escherichia coli heterologous system. Only cysteine 169 was essential in both enzymes, and inhibitor studies suggest that it is the main target of cerulenin, an antibiotic reacting with the cysteine in the active center of condensing enzymes. Most of the other exchanges led to reduced activities. In two cases, the enzymes responded differently, suggesting that the cysteines at positions 135 and 195 may be involved in the different product specificity of the two enzymes. The sequences surrounding the essential cysteine 169 revealed no similarity to the active sites of condensing enzymes in other polyketide synthases and in fatty acid biosynthesis. The available data indicate that resveratrol and chalcone synthases represent a group of enzymes that evolved independently of other condensing enzymes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of amino acid residues important in the cyclization reactions of chalcone and stilbene synthases.

Chalcone synthase (CHS) and stilbene synthase (STS) catalyse condensation reactions of p-coumaroyl-CoA and three C(2) units from malonyl-CoA up to a common tetraketide intermediate but then catalyse different cyclization reactions to produce naringenin chalcone and resveratrol respectively. On the basis of sequence alignment with other condensing enzymes including 3-ketoacyl-(acyl carrier prote...

متن کامل

Site-directed mutagenesis of benzalacetone synthase. The role of the Phe215 in plant type III polyketide synthases.

Benzalacetone synthase (BAS) and chalcone synthase (CHS) are plant-specific type III polyketide synthases (PKSs) that share approximately 70% amino acid sequence identity. BAS catalyzes a one-step decarboxylative condensation of 4-coumaroyl-CoA with malonyl-CoA to produce a diketide benzalacetone, whereas CHS performs sequential condensations with three malonyl-CoA to generate a tetraketide cha...

متن کامل

Stilbene and chalcone synthases: related enzymes with key functions in plant-specific pathways.

Several years of extensive research using the new powerful techniques of molecular biology have enabled the direct comparison of functionally or evolutionarily related genes and their products at the nucleotide and amino acid sequence levels. Two types of synthase with similar functions are discussed as an interesting example. Stilbene synthases, e.g. resveratrol synthase, produce the stilbene ...

متن کامل

Evolutionary Implications and Physicochemical Analyses of Selected Proteins of Type III Polyketide Synthase Family

Type III polyketide synthases have a substantial role in the biosynthesis of various polyketides in plants and microorganisms. Comparative proteomic analysis of type III polyketide synthases showed evolutionarily and structurally related positions in a compilation of amino acid sequences from different families. Bacterial and fungal type III polyketide synthase proteins showed <50% similarity b...

متن کامل

Expanding the biosynthetic repertoire of plant type III polyketide synthases by altering starter molecule specificity.

Type III polyketide synthases (PKS) generate an array of natural products by condensing multiple acetyl units derived from malonyl-CoA to thioester-linked starter molecules covalently bound in the PKS active site. One strategy adopted by Nature for increasing the functional diversity of these biosynthetic enzymes involves modifying polyketide assembly by altering the preference for starter mole...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 266 15  شماره 

صفحات  -

تاریخ انتشار 1991